Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna
نویسندگان
چکیده
Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands.
منابع مشابه
Monopole Antenna Radar Cross Section Reduction with Plasma Helix
In this paper, a new method for radar cross section reduction of a monopole antenna is proposed. In this method, a plasma helix like fluorescent bulbs is placed around the antenna element. The selected plasma parameter for this medium acts as an absorber without disturbing the antenna performance. The simulations show that radar cross section of simulated antenna is reduced in a wide frequency ...
متن کاملMultiband Slot Loaded Uniplanar CPW-fed Monopole Antenna with Asymmetrical Arms
This paper presents a new approach for the design of a multiband uniplanar CPW-fed monopole antenna. The antenna consists of a fork like monopole strip to which is added an inverted U-shaped strip. The three branch fork like strip can create three resonant bands within the WLAN range while the placement of the inverted U-shaped strip provides a better impedance matching for the lowest resonant ...
متن کاملA Novel Small E–Ring Shaped Monopole Antenna with Dual Band-Notch Function for UWB Wireless Communications
This paper presents an E-ring shaped printed monopole antenna for UWB applications with dual notched bands performance. In order to generate single frequency band notch function, we applied a U-ring shaped monopole antenna, and by inserting a rectangular ring in the centre of it an E-ring shaped radiating patch created and a dual band-notch function can be achieved. The measured bandwidth of th...
متن کاملUltra Wideband Monopole Antenna Excited by a Capacitive Coupling Feed with Double Band Notch Function
This paper presents the results of a new monopole antenna that exhibits 2.75-10.7 GHz performance. The proposed antenna consists of a radiating patch with notches excited by capacitive coupling feed. Also, the antennas truncated ground-plane incorporates a central notch. This modification significantly improves the antennas impedance bandwidth by 118% over an ultra-wideband frequency range. T...
متن کاملEvolution Process of a Broadband Coplanar- Waveguide-fed Monopole Antenna for Wireless Customer Premises Equipment
In this paper a design process of a broadband printed monopole antenna using stepped cut at four corners (CSFC) technique is proposed. The CSFC is a technique that four corners a patch (rectangular/square) of planar monopole antennas are cut in order to enhance the impedance bandwidth. The technique can be used to design any different types of planar monopole antenna in specific frequency range...
متن کامل